NORMAL FUNCTIONALS ON LIPSCHITZ SPACES ARE WEAK* CONTINUOUS
نویسندگان
چکیده
منابع مشابه
Characterising Weak - Operator Continuous Linear Functionals on B ( H ) constructively
Abstract. Let B(H) be the space of bounded operators on a notnecessarily-separable Hilbert space H . Working within Bishop-style constructive analysis, we prove that certain weak-operator continuous linear functionals on B(H) are finite sums of functionals of the form T 〈Tx, y〉. We also prove that the identification of weakand strong-operator continuous linear functionals on B(H) cannot be esta...
متن کاملLipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces
We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.
متن کاملOrder continuous linear functionals on non-locally convex Orlicz spaces
The space of all order continuous linear functionals on an Orlicz space L defined by an arbitrary (not necessarily convex) Orlicz function φ is described.
متن کاملSpaces of Lipschitz Functions on Metric Spaces
In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu
سال: 2021
ISSN: 1474-7480,1475-3030
DOI: 10.1017/s147474802100013x